INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, First Semester, 2023-24 Statistics - II, Final Examination, November 20, 2023

Maximum Marks: 50 Time: 3 hours

1. X_1, X_2, \ldots, X_n is a random sample from $N(0, \sigma^2)$ where $\sigma^2 > 0$ is unknown. Consider testing $H_0: \sigma^2 \leq 1$ versus $H_1: \sigma^2 > 1$ at the significance level $0 < \alpha < 1$.

(a) Show that UMP test exists.

(b) Consider the test which rejects H_0 when $\sum_{i=1}^n (X_i - \bar{X})^2 > \chi_{n-1}^2 (1-\alpha)$. Show that this test has level α .

(c) Is the test given in (b) the UMP test? Justify. [2+3+5]

2. X_1, X_2, \ldots, X_n is a random sample from $N(\mu, 1)$ where $-\infty < \mu < \infty$ is unknown.

(a) Derive the generalized likelihood ratio test (GLRT) for testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ at the significance level α for any fixed μ_0 .

(b) Using the test obtained in (a) construct a $100(1-\alpha)\%$ confidence interval for μ . [7+3]

3. Suppose that X, the weekly number of accidents at a street junction, has the Poisson distribution with parameter $\lambda > 0$. Let X_1, \ldots, X_5 be a random sample with the observed counts of 1, 0, 3, 2, 2. Assume that the prior distribution on λ is Exponential with mean 1.

(a) Find the posterior distribution of λ . What are the posterior mean and standard deviation?

(b) How does one construct the $100(1 - \alpha)\%$ HPD credible interval for λ ? (c) Find the posterior odds ratio and the Bayes factor for testing $H_0: \lambda \leq 2$ versus $H_0: \lambda > 2$. (Numerical answers are not needed.) [7+3+4]

4. Consider a random sample X_1, X_2, \ldots, X_n from $N(\theta, \theta^2)$ where $\theta > 0$. (a) What is the minimal sufficient statistics for θ ?

Consider the statistics $T_1(X_1, \ldots, X_n) = \overline{X} = \sum_{i=1}^n X_i/n$ and $T_2(X_1, \ldots, X_n) = \sqrt{\sum_{i=1}^n (X_i - \overline{X})^2/n}.$

(b) Are these unbiased estimates of θ ? Are they consistent?

(c) Find the asymptotic distributions of T_1 and T_2 .

(d) As an estimator of θ , what is the asymptotic relative efficiency of T_1 with respect to T_2 ? [3+3+8+2]